Exercise 9.2.4

Find the general solutions of the PDEs in Exercises 9.2.1 to 9.2.4.

$$
\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y}+\frac{\partial \psi}{\partial z}=x-y
$$

Solution

Since ψ is a function of three variables $\psi=\psi(x, y, z)$, its differential is defined as

$$
d \psi=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y+\frac{\partial \psi}{\partial z} d z
$$

Dividing both sides by $d x$, we obtain the relationship between the total derivative of ψ and the partial derivatives of ψ.

$$
\frac{d \psi}{d x}=\frac{\partial \psi}{\partial x}+\frac{d y}{d x} \frac{\partial \psi}{\partial y}+\frac{d z}{d x} \frac{\partial \psi}{\partial z}
$$

In light of this, the PDE reduces to the ODE,

$$
\begin{equation*}
\frac{d \psi}{d x}=x-y \tag{1}
\end{equation*}
$$

along the characteristic curves that satisfy

$$
\begin{array}{ll}
\frac{d y}{d x}=1, & y(0, \xi)=\xi \\
\frac{d z}{d x}=1, & z(0, \eta)=\eta \tag{3}
\end{array}
$$

where ξ and η are characteristic coordinates. Integrate both sides of equations (2) and (3) with respect to x.

$$
\begin{aligned}
& y(x, \xi)=x+\xi \\
& z(x, \eta)=x+\eta
\end{aligned}
$$

From the first of these equations, we see that $x-y=-\xi$, so equation (1) becomes

$$
\frac{d \psi}{d x}=-\xi
$$

Integrate both sides with respect to x.

$$
\psi(x, \xi, \eta)=-\xi x+f(\xi, \eta)
$$

Here f is an arbitrary function of the two characteristic coordinates. Now eliminate ξ and η in favor of x, y, and $z: \xi=y-x$ and $\eta=z-x$.

$$
\psi(x, y, z)=-(y-x) x+f(y-x, z-x)
$$

Therefore,

$$
\psi(x, y, z)=x(x-y)+f(y-x, z-x) .
$$

